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This paper considers the dispersion of a cloud of passive contaminant released 
from an instantaneous source in the steady two-dimensional laminar flow near 
the forward stagnation point on a bluff body. The body is replaced by its tangent 
plane y = 0 with x measuring distance along the plane. Far away from y = 0 the 
flow is irrotational with velocity potential gZ(x2- y2), where I is a positive con- 
stant. When the boundary layer is ignored the equation governing the distribu- 
tion of concentration can be solved exactly. Consequences of this solution are 
that for large times the centre of mass moves parallel to the body at  a speed pro- 
portional to exp (It) while the cloud spreads out along the body symmetrically 
about the centre of mass with the magnitude of the spread also proportional to 
exp (It). However, this solution is unrealistic because most of the contaminant is 
confined to a layer adjoining the body of thickness of order ( K / I ) + ,  where K is the 
molecular diffusivity, and this layer normally lies within the boundary layer, 
which is of thickness of order (v/I)$, where v is the kinematic viscosity. An approxi- 
mate analysis, based on ideas similar to those supporting the Pohlhausen method 
in boundary-layer theory, suggests that when the boundary layer is taken into 
account the conclusions above remain true provided that exp (It) is replaced by 
exp (pit), where ,8 is a constant depending on v / K .  Calculations give values of p 
ranging from 0-73 when v / K  = 0.5 to 0.10 when v / K  = lo3. 

1. Introduction 
The dispersion of contaminant in fluid flows is an important scientific problem, 

currently receiving much attention on television and in the Press. About twenty 
years ago Taylor (1953, 1954) discussed the way in which a finite cloud of passive 
contaminant is dispersed in steady pipe flow under the influence of advection 
with the fluid and diffusion. He showed that the centre of mass of the cloud 
travels downstream at the discharge velocity U and that if Cm denotes the mean 
of the distribution of concentration C over the pipe cross-section then for large t 

1 (x - Ut)2 cm M - 
Z(nKt)* { - 4Kt }’ 

where x is axial distance and K is a constant depending on the variation of the 
fluid velocity over the cross-section and on the intensity of the diffusion process. 
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Noteworthy features of this distribution are its symmetry about the centre of 
mass (caused by the action of lateral diffusion on the highly asymmetrical distri- 
bution which would arise from advection alone), and that the spread of the cloud 
about its centre of mass is proportional to (l i t)+. 

Since Taylor’s work it has been shown by Batchelor (1966) that a necessary 
condition for Cm to be of the form (1.1) in any flow is that the longitudinal velocity 
of a fluid molecule be a stationary random function of time for large t ,  as it is in 
flow in a long pipe of constant cross-section under a steady pressure gradient. In  
most flows this condition is not satisfied, and some of these are both important 
and relatively simple. For example, the dispersion of tracers in the bloodstream 
takes place in an unsteady flow, and in the atmosphere the time necessary for the 
velocity of a fluid molecule to become effectively stationary in a steady wind is so 
long that for practical purposes the atmosphere can often be regarded as vertically 
unbounded, so that the velocity of a molecule is never stationary (see Chatwin 
1968). 

Another important and interesting class of flows in which Batchelor’s condi- 
tion is not satisfied are those (statistically) steady flows in which the streamlines 
of the mean motion are not parallel. One of these is the subject of this paper. The 
common feature of these flows from the point of view of dispersion is that as a 
fluid molecule is advected downstream the length scale of the random motion to 
which it is subjected, whether molecular or turbulent, is changing with time. In  
certain of these flows predictions about the way in which the cloud disperses can 
be made on the basis of dimensional arguments (or, alternatively, by a trans- 
formation of the length and time scales so that the transformed velocity is 
a stationary random function of transformed time; see Batchelor (1957)). In  an 
axisymmetric turbulent jet, for example, the statistical properties of the motion 
of a fluid molecule at  time t after release from the origin of the jet can depend only 
on t and F/p,  where F is the force applied a t  the origin of the jet and p is the fluid 
density. It follows that, if the longitudinal displacement of the fluid molecule a t  
time t is X ( t ) ,  then X, {(X - X)2}4 and all other length scales associated with the 
distribution of X ( t )  are proportional to (Ft2/p)B, where an overbar denotes the 
ensemble mean. It also follows that if (r ,  8, x) are cylindrical polar co-ordinates 
centred at the origin of the jet with r = 0 being the axis of symmetry of the 
jet then C(x, r ,  t ) ,  the distribution of concentration within a dispersing cloud, 
satisfies 

Thus the shape of the cloud is the same for all t and its size alone changes. Unfortu- 
nately in these and similar flows it generally seems to be difficult to obtain more 
detailed information (about the functionf in (1.2) for example) without involved 
computation for each flow, based on differential equations which are necessarily 
approximate for cases when the flow is turbulent. Such work is in progress and 
will be reported later. 

The situation is in some respect similar to that in the early years of boundary- 
layer theory before the widespread use of large computers. Apart from some 
important similarity solutions, detailed and accurate results were difficult to 
obtain and, especially in engineering, approximate methods like that due to 

C(x, r ,  t )  = ( p / W V ( t ,  T ) ,  where (‘5, T )  = (p/Ft2P (x, Y). (1.3) 
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Pohlhausen proved very useful for obtaining reasonable numerical predic- 
tions. 

In  the present paper such an approximate method is suggested and applied to 
the dispersion of a cloud of contaminant in the laminar flow near a stagnation 
point. Although it is believed that the method will be useful in other flows to 
which Taylor's analysis cannot be applied and which were briefly discussed above, 
this particular flow was chosen because of the lucky circumstance that the 
diffusion equation governing the dispersion of the cloud can be solved exactly 
when the contaminant is in the irrotational part of the flow outside the boundary 
layer. The form of this solution (see § 2 )  suggested the approximate method pro- 
posed and discussed in $§ 3 and 4 and also enables some checking of its predictions. 
These results illustrate the effect of the spreading of the mean streamlines. This 
effect was also discussed for turbulent flow and steady sources near stagnation 
points by Hunt & Mulhearn (1973) and, although the differences between their 
problem and the one examined here make precise comparison impossible, some 
of the qualitative features are similar and will be mentioned later. 

In  the neighbourhood of the forward stagnation point 0 on any bluff body the 
flow is approximately that which would occur were the body replaced by its 
tangent plane a t  0, say y = 0, with x and z being co-ordinates in the plane. 
Outside the boundary layer the flow is irrotational and derivable from the 
velocity potential $, where 

$ = &{lx2+mz2- (E+m)y2), (1.3) 

and E and m are constants, and 2 + m must be positive for 0 to be the forward 
stagnation point. Hence at least one of Z and m is positive and it will be 
supposed that I > 0. For simplicity of exposition the detailed calculations in 
this paper are for the two-dimensional case when rn = 0, but the work can be 
generalized straightforwardly t o  three dimensions. 

This restriction to two dimensions means that in later work in this paper 
C(x, y, t )  is the distribution of concentration in the x, y plane of contaminant 
initially distributed uniformly along a line parallel to the z axis. However, the 
same function is relevant in the case when m = 0 and the contaminant is initially 
concentrated at a point situated, say, in the plane z = 0, for dispersion in the 
direction of the z axis is caused by molecular diffusion alone, so that the distribu- 
tion of concentration throughout space is given simply by 

where K is the molecular diffusivity. In both cases C(x, y, t )  Sx Sy is the proportion 
of contaminant within an infinite cylinder parallel to the z axis with cross- 
sectional area Sx Sy. This last remark applies even for contaminant initially distri- 
buted non-uniformly along a line parallel to the z axis. 

The boundary layer which forms on y = 0 is discussed in Rosenhead (1963). 
It has the property that its thickness is constant and thus is proportional to 
(v/Z)* on dimensional grounds. When m = 0 the stream functionY(x, y ) ,  therefore, 
has the form 

Y ( x ,  Y) = x (v l ) f sml ) ,  7 = y(E/+. (1.5) 
48-2 
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Use of the boundary-layer equations (or indeed the Navier-Stokes equations) 
and the appropriate boundary conditions leads to 

F" + FF" + 1 - F" = 0, 
F(0)  = F'(0) = 0, F'(co) = 1. 

This equation is due to Hiemenz although the values of F and its derivatives used 
in this paper were calculated by Bickley (unpublished, but quoted in Rosenhead 
1963, p. 232). Note that (1.5) may also be used to describe the irrotational flow, 
with m = 0, when 

F ( r )  = 7. (1.7) 

In  the remainder of this paper it will prove convenient to use F(7) to describe 
either the boundary-layer flow [with ( l .S) ]  or the irrotational flow [with (1.7)], 
and the context will make clear which form is being used. 

2. Dispersion in the irrotational flow outside the boundary layer 

equation governing the distribution of concentration C(x, y, t )  is 
When m = 0 the irrotational flow has components (Zx, - Zy, 0), so that the 

where K is the molecular diffusivity, here assumed constant. Although K depends 
on C when Cis small previous work has given good agreement between theory and 
experiment when K is assumed constant in the case of laminar flow in pipes of 
constant cross-section (see for example Taylor 1953). It is assumed likewise here 
that K is constant since the purpose of the present paper is to examine the effect 
of non-parallel streamlines rather than that of variable K .  If the contaminant is 
released from a source a t  (xo, yo) at  t = 0 then 

( 2 . 2 )  

Also there must be no flux of contaminant across the boundary and C must decay 
to zero far away from the source. Hence 

C(X, Y, 0) = S(X - x-0) S(Y - Yo). 

aC/ay = 0 at y = 0, C-tO as x2+y2-+00. (2.3) 

The solution of this problem is 

The particular form of (2.4) with xo = yo = 0 was derived by Townsend (1951), 
but in the context of the diffusion of a heat spot in turbulent flow. As might be 
expected the solution for yo $: 0 displays the effect of an image source at  (xo, - yo). 
The form of C(x ,  y, t ) ,  given in (2.4), is illustrated for various values of It and 
(xo, yo) in figure 1. Certain features are worth pointing out for later use. 
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FIGURE 1. Contours of C in irrot,ational flow obtained from (2.4) for various values of 
zo, yo and It. Each contour has C equal to 0.8 of the maximum concentration a t  that value 
O f  It. (a)  Xo = 0, go = 0; ( b )  X o  = 0, TJo(l/K)k = 2 ;  (C) XO(c?/K)k = 2 ,  yo(c?/K)a = 2 .  -, 7t = I-. 2 '  

, It =: 11: -. -. , It = 2.  --_ 
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The centre of mass of the cloud of contaminant can be obtained by integrating 
(2 .4 ) .  Its  x co-ordinate x(t) satisfies 

Z(t) = xoelt, (2.5) 

and this ispreciseIy the x co-ordinate at  time t of the fluid particle that was at  the 
source position (xo, yo) at t = 0. Thus, a t  least in the x direction, the centre of mass 
of the cloud moves with the fluid. In  a sense this is similar to the situation in pipe 
flow where the centre of mass of the cloud moves with the discharge velocity 
[see (1.1)], which is the average fluid velocity (over the cross-section). However, 
in pipe flow it is diffusion across the streamlines that causes the molecules of 
contaminant to sample all fluid velocities, giving an average contaminant 
molecule velocity equal to the average fluid velocity, whereas in stagnation-point 
flow different contaminant molecules have different velocities in the x direction 
because of diffusion along the direction of flow. But (2 .5)  shows that those parts 
of the cloud that are moving more slowly than the centre of mass give a contribu- 
tion to the position of the centre of mass that is exactly balanced by those parts 
that are moving more quickly. 

Even more surprising perhaps, though clearly shown in figure 1, is the fact that 
the cloud is spread out in the x direction symmetrically about x(t). It can be 
verified that this result is, unlike the corresponding result in pipe flow, inde- 
pendent of lateral diffusion (that in the y direction) and evidently depends on the 
fact that the x component of fluid velocity relative to that of the centre of mass 
is an odd function of displacement from the centre of mass. The magnitude of the 
spread can be measured by C,(t), where 

CZ(t) = J/(x-X)2Cdzdy. (2.6) 

C, = (K[exp (2It) - 1]/1}+. 

From (2.4) the following value is obtained: 

(2.7) 
For small It this is approximately (2~t)* ,  which is the spread which would be 
observed with no advection, but for large It the value of C, increases like exp (It)  
as does the displacement in the x direction between any pair of fluid molecules. 

The y component of velocity is everywhere towards y = 0, so that diffusion 
cannot spread the cloud of contaminant over all values of y. Indeed (2.4) shows, 
and figure 1 illustrates, that for large values of It the contaminant is confined to 
a layer of constant and uniform thickness of order ( K / Z ) + ,  and that, again for large 
values of It, 

where 7 is the y co-ordinate of the centre of mass of the cloud and C, is its spread 
in the y direction defined by a relation analogous to (2.6). As is to be anticipated 
the presence of the wall ensures that both 7 and I;, are eventually independent 
of yo. Indeed more detailed calculations show that, for all values of It, C, (like 2,) 
is independent of (xo,yo) and that P depends on yo only for small values of It, 
when, like x, it follows the fluid particle which was initially at  (xo, yo). 

Hunt & Mulhearn (1973) found that the ensemble mean position of a marked 
fluid particle in weak turbulent flow tended to follow the mean streamline of the 
flow through the initial position of the particle at least until the influence of the 

(2.8) Z (2K/n1)3, C, M (K (  1 - 2/n)/l}#, 
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boundary became important. The results above for x and H for small It show the 
same result for a marked fluid molecule in laminar flow. They also found that for 
turbulent flow near the forward stagnation point on a circular cylinder the cloud 
of contaminant released from a source on x = 0 (using the notation of the present 
paper) tended to flatten along the cylinder as time progressed. Figures 1 (a)  and 
( b )  show the same phenomenon in the present problem. 

Unfortunately this exact solution has little practical significance since in most 
fluids V / K  > 1 and therefore the layer of contaminant (of thickness of order 
( K / Z ) $ )  does not lie mainly outside the boundary layer (of thickness of order (v/Z)*; 
see (1.5)). In  liquids indeed, the value of V / K  is of order lo3, so that the layer of 
contaminant lies deep within the boundary layer for all Zt if yo = 0, and eventually 

0, the solution (2.4) may have significance for It not 
too large. This will happen provided that there is a range of values of It for which 
a substantial portion of the cloud lies outside the boundary layer but within the 
region where the velocity has the form derived from (1.3) with m = 0. Consider 
for example flow of a uniform stream of velocity U a t  infinity past a circular 
cylinder of radius a in which I is Zulu. Then for the above conditions to be 
satisfied initially it is necessary that 

(2.9) 

Subsequently the solution (2.4) has validity for those times for which (2.9) hold 
with xo and yo replaced by X and 7, or, if xo (and thus 1) is zero, with xo replaced 
by S,. Use of (2.4), (3.5) and (2.7) gives validity for those times for which 

ifyo =I= 0. 
In  the latter case, i.e. yo 

a-1(1$)* = (V/2UU)* < yo/a < I ,  xo/a < 1. 

} (2.10) 
exp (2 Ut/.) < (yola) ( 2  Ua/v)*, 

exp (ZUt/a) < u/xo (xo =I= 0) or exp (2Ut/a) -cg (2Ua//c)t (x, = 0). 

For a case in which 3Uu/v = 106 and xo/u = yo/a = 10-l the most restrictive 
inequality of (2.10) is that involving xo and implies validity provided that 
Ut = O(a),  i.e. for times in which a fluid particle far away from the cylinder travels 
a distance equal to the cylinder radius. If xo = 0 but the other values above 
remain unchanged the most restrictive inequality of (2.10) is that involving yo 
and implies validity provided that Ut = O(10a).  

3. Dispersion in the boundary layer 
The analysis a t  the end of $ 2  shows that, whatever the values of xo and yo, 

equation (2.1) for C is not valid for large It, and has to be modified by using the 
boundary-layer velocity distribution defined by (1.5) and (1.6). Writing 
7 = y(l/v)8 as in (1.5) gives 

aC ac ac a2c a w  - + ZXF’(7]) - - ZP(7]) - = K - + (KZ/V)  - . 
at ax a7 8x2 ar2 

It is convenient to use dimensionless variables throughout, using scales for x and t 
suggested by the form of the solution (2.4) for irrotational flow. On writing 

( = X(t?/K)+, 7 = It, (7 = V / K ,  (3.2) 
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FIGURE 2.  Graphs of P and F’ defined in (1.5) and (1.6), shown by the solid lines. These 
have been drawn from data on p. 232 of Rosenheed (1963). The dashed lines are the cor- 
responding curves in irrotational flow, in which F(7) = 7 [see (l.?’)]. 

(3.1) becomes 

(3.3) 
ac ac ac a2c 1 a2c 
a7 a< a? a p  c a72 
-+CF’--F- = -+--, 

The boundary conditions for C are the same as those in irrotational flow, viz. 
(2.3) and (2.3). 

Figure 2 shows how F and F‘ in boundary-layer flow [given in (1.5) and (1.6)] 
compare with their forms in irrotational flow [given in (1.5) and (1.7)]. The 
boundary-layer thickness, defined as the distance from the wall at which the 
x component of velocity is 99 % of its value in the main stream, is 24(u/Z)*, and 
for large 7, P NN 7 - 0.68 in the boundary layer. 

The component of velocity towards the wall is less than in irrotational flow, so 
that the thickness of the layer of contaminant will be greater than in irrotational 
flow. For given x, the x component of velocity is less than its value in irrotational 
flow, so that the values of and I;, will be less than in irrotational flow. The form 
of (3.3) shows that the magnitudes of these differences depend on the value of w, 
and it is one purpose of the remainder of this paper to quantify these differences 
at  least approximately. 

With P having its boundary-layer form given in (1.5) and (1.6) there is appa- 
rently no simple analytic form for the solution of (3.3), but the work of Aris 
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FIGURE 3. Graphs of U0' in boundary-layer flow defined in (3.6), for various values of C, 
shown by the solid lines. The dashed lines are the corresponding curves in irrotational 
flow. Notice that the scales are not the same for each graph. 

(1956) has shown that it is often useful and analytically practicable to look at  the 
form of the integral moments of the distribution of concentration. Here the 
integral moments C(")(y, 7) in the x direction, defined for all positive integers n by 

give information about how the distribution of concentration varies with 7. Por 
example C(O)Srq is proportional to the total amount of contaminant between 7 and 
7 + S7 and an equation for C(O) can be obtained by integrating (3.3) with respect 
t o  5, giving 

It is evident that, as T-+ 00, C(O) becomes independent of 7 and so, integrating (3.5), 

00) z A exp { - g j: ~ ( u )  d.), (3.6) 

where A is a constant. In  figure 3 the large time value of C(0) given by (3.6) is 
plotted for various values of cr and compared with the corresponding result in 
irrotational flow. As anticipated above the contaminant layer is thicker than is 
predicted by irrotational flow theory. 
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The values of C(n) for values of n greater than zero also have relevance. For 
example C(1), C@) and 0 3 )  are respectively related to the centre of mass, the 
variance and the skewness of the distribution of concentration at  a given height. 
An equation for 0") can be obtained by multiplying (3.3) by fl" and integrating. 

for all n provided that the right-hand side of (3.7) is taken as zero for n = 0 and 
n = 1.  (Thus (3.7) reduces to (3.5) when n = 0.) To discuss this equation further 
it is convenient to define 

so that 

The complementary function of (3.9) can be written as 

m 

m=O 
%?(a) = A g )  fgJ(7) exp ( -ag)7), 

where f:) is defined between 7 = 0 and 7 = co for all integers m and n by 

(3.10) 

(3.11) 

The boundary condit,ions on f2' can be obtained from (2.3) as 

d f g ) / d r = O  at 7 = 0 ,  fk)-+O as 7-tco. (3.12) 

For each n, (3.11) and (3.12) constitute a standard eigenvalue problem so that 
ad") < c11(") < aZ(n). . . . The work following (3.5) shows that ado) = 0 and it can also 
be shown (see Titchmarsh 1962, chap. 5) that a d p )  < a,$') <ado) = 0 when 
p > q > 0. Since it follows from (3.10) that, for large 7, Wn), and hence Un), is 
proportional to exp ( - adn)r), this shows that, for n > 0, (3%) increases expo- 
nentially with i-. In  particular, for large i-, x and Xz are proportional to 
exp ( -  ad')^) and exp ( - +ad2)r) respectively. A calculation by hand gave 

ad1) M - 0.70, ad2' z - 1.46 for (T = 1, (3.13) 

while in irrotational flow the values given by (2.5) and (2.7) are ad1) = - 1 and 
ad2) = - 2. These results support the conclusion above that both x and Xz are less 
than their values in irrotational flow. 

A thorough numerical investigation of the equation for C itself, viz. (3.3), or 
of those for the C(n), viz. (3.7), for a range of values of (T is intended, but is unlikely 
to lead to great insight into the way in which contaminant disperses in that whole 
class of flows discussed in Q 1, of which two-dimensional stagnation-point flow 
is but one example. 
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4. An approximate method for large times 

and uniform thickness as r-+m and (2.4) shows that, for large r, 
In  irrotational flow the layer of contaminant adjacent to y = 0 is of constant 

C z A (5, r )  exp { - &q2}. (4.1) 

Hence at each 7 the variation of C with ,$ and r is the same. In  the boundary layer 
the stream function is proportional to x as it is in irrotational flow and hence the 
boundary layer is of uniform thickness. It therefore seems plausible that the layer 
of contaminant in the boundary layer will also be of uniform thickness as r + 00. 

Now in irrotational flow the variation of C(O) with 7 can be obtained from (3.6) 
with F given by (1.7) and is the same as the variation of C with 7 given by (4.1). 
Accordingly the hypothesis now made is that this result is approximately true 
in the boundary-layer flow for large r, i.e. that 

using (3.6). Substitution of (4.2) into the exact equation for C, equation (3.3), gives 

a2A a aA 
-+F'- (,$A) = -, 
a7 at a t2  (4.3) 

which cannot be true unless 3' is independent of 7. Thus (4.3) is exact in irrota- 
tional flow, when (1.7) holds, but not in the boundary-layer flow, when ( 1.6) holds. 

However, F' describes the variation of the x component of velocity normal to 
the body and it seems reasonable to suppose that first approximations to x, Zz 
and other properties of the dispersing cloud can be obtained by using an average 
value of F' in (4.3). Many averages could be proposed but one only is consistent 
with the requirement that contaminant be conserved, and also with (4.2). 
Integrate (3.3) with respect to 7 from 0 to co obtaining 

Since 

is, in non-dimensional variables, the quantity of contaminant between two 
infinite planes perpendicular to the body a small distance apart, (4.4) is the 
equation describing how this quantity changes owing to advection and diffusion. 
Equation (4.4) is obtained from (3.3) in the same way as, in boundary-layer 
theory, the momentum integral of von K&rm&n is obtained from the boundary- 
layer equations. 

Now substitution of the assumed form of C, given in (4.2), into (4.4) leads to an 
equation for A(C,r) and, again, this procedure is similar to that employed in 
those methods, like that of Pohlhausen, which use the momentum integral of 
von Kkm&n to obtain approximate predictions of the behaviour of boundary 
layers. The equation obtained for A(,$, r )  in this way is 
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U 0.5 1.0 2.0 5.0 10.0 100.0 1000.0 co 
P 0.73 0.66 0.58 0.48 0.40 0.21 0.10 0 

TABLE 1. The values of /3, given by (4.6), in terms of (r = Y ~ K .  The data used in calculating p 
is given on page 232 of Rosenhead (1963). In  irrotational flow B = 1. 

FIGURE 4. Graph of /3 against log,,cr (see table 1). As r becomes very large 
P tends to  zero and in irrotational flow p is 1. 

where 

Comparison of (4.3) and (4.5) shows that P’ has been replaced by an average 
value p, and (4.6) shows that this average of P’ is obtained by weighting F’ with 
the postulated variation of C normal to the wall. 

The solution of (4.5) which tends to zero as 161 -+a is, returning to dimensional 

where xg is a constant (which need not be the x co-ordinate of the actual source 
since (4.7) has been obtained on the assumption that It $ 1). From (2.4) it can be 
seen that (4.7) is correct in irrotational flow provided /3 = 1. But (4.6) shows that 
this is true, for in irrotational flow F’(7) = 1 everywhere [see (1.7)]. 

For It 9 1, according to (4.7), 

S z z,exp (PZt), C, z {(K/PZ) [exp (2PZt) - I]}$, (4.8) 
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FIGURE 5 .  Contours of C given by (4.2) and (4.7) with xo = 0 and It = 2 for various values 
of u. As in figure 1 each contour has C equal to 0.8 of the maximum concentration at  It = 2. 
At this value of It the value of yo has little significance provided that it is of order ( ~ / l ) * .  
The irrotational flow contour is shown for comparison, and is marked u = 0. 

so that /3 determines both the speed of the centre of mass of the cloud and the rate 
a t  which it spreads in the x direction. Values of /3 for various values of cr are given 
in table I and plotted in figure 4. The graph shows that, for $ < cr < 10, 

(4-9) 
but that, for higher values of cr, /3 decreases less rapidly than predicted by (4.9). 
Since cr = V / K  measures the relative intensity of viscous and molecular diffusion 
it is evident that for large values of cr the contaminant layer is embedded deep 
within the boundary layer (as shown in figure 3). Because the x component of 
velocity increases monotonically from zero at  the wall the value of p decreases 
with cr in agreement with figure 4. 

The form of C given by (4.3) with (4.7) is plotted in figure 5 for cr = I, I0 and 
1000 and It = 2 and compared with the form in irrotational flow. Notice particu- 
larly how, as cr increases, the cloud spreads less in the x direction for the reasons 
outlined in the previous paragraph. This figure, in contrast with figure 3, has 
Y ( Z / K ) ~  as ordinate so that comparison for various values of cr can be made. 

Judgement of the method proposed here must be postponed until accurate 
numerical results are available, but one implication will be mentioned here. This 
is that the eigenvalues adn) of the moment equations [see (3.1 l)] satisfy 

ad") = = - np, (4.10) 

as they do in irrotational flow. This result follows by determining the integral 
moments of (4.7). For cr = 1 this gives ad1' = - 0.66 and ad2) = - 1.32, which are 
fairly close to the values given in (3.13). 

,8 % 0.68 - 0.36 log,, C, 
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